Apple's Huge 3nm Chip Orders for iPhone 15 Pro and M3 Macs Helping to Maintain TSMC's Fab Utilization Rates

Apple supplier TSMC is making strides to improve its production capacity for chips based on its cutting-edge 3-nanometer process technology, according to industry sources, which is expected to debut in this year's iPhone 15 Pro and upcoming MacBook models.

tsmc semiconductor chip inspection 678x452
DigiTimes reports that TSMC's 5nm fabrication capacity began to loosen in November 2022 as a result of reduced orders from Apple, amongst other partners, with orders for iPhone chips alone having been slashed by 30%. However, the Taiwanese manufacturer has apparently been able to keep its utilization rate at 70% or higher thanks to Apple's thirst for 3nm:

TSMC continues to improve its capacity utilization for 3nm process technology, which is expected to approach 50% at the end of March, the sources said. The foundry will also grow the process output to 50,000-55,000 wafers monthly in March, with Apple being the main customer.

Apple's upcoming ‌iPhone 15‌ Pro models are expected to feature the A17 Bionic processor, Apple's first ‌iPhone‌ chip based on TSMC's first-generation ‌3nm‌ process, also known as N3E.

The first-gen ‌3nm‌ process is said to deliver a 35% power efficiency improvement over TSMC's 5nm-based N4 fabrication process, which was used to make the A16 Bionic chip for the ‌iPhone‌ 14 Pro and Pro Max. The N3 technology will also offer significantly improved performance compared to current chips manufactured on 5nm.

Apple's next-generation 13-inch and 15-inch MacBook Air models are both expected to be equipped with an M3 chip, which is also likely to be manufactured on the ‌3nm‌ process for further performance and power efficiency improvements. Apple is also reportedly planning to release an updated version of the 13-inch MacBook Pro with an M3 chip. The M2 chip and its higher-end Pro and Max variants are built on TSMC's second-generation 5nm process.

Orders for new AI processors from Nvidia and AMD, as well as Apple's new ‌iPhone‌ chip, are expected to help TSMC avoid further fab utilization declines in the second quarter, DigiTimes' sources said.

Popular Stories

AirPods Pro 3 Mock Feature

AirPods Pro 3 Just Months Away – Here's What We Know

Friday April 18, 2025 5:16 am PDT by
Despite being more than two years old, Apple's AirPods Pro 2 still dominate the premium wireless‑earbud space, thanks to a potent mix of top‑tier audio, class‑leading noise cancellation, and Apple's habit of delivering major new features through software updates. With AirPods Pro 3 widely expected to arrive in 2025, prospective buyers now face a familiar dilemma: snap up the proven...
iphone 17 air dummy unbox therapy

iPhone 17 Air's Extreme Thinness Demoed in New Video

Tuesday April 22, 2025 10:22 am PDT by
Apple plans to release an all-new super thin iPhone this year, debuting it alongside the iPhone 17, iPhone 17 Pro, and iPhone 17 Pro Max. We've seen pictures of dummy models, cases, and renders with the design, but Lewis Hilsenteger of Unbox Therapy today showed off newer dummy models that give us a better idea of just how thin the "iPhone 17 Air" will be. The iPhone 17 Air is expected to be ...
iphone 17 dummies sonny dickson

iPhone 17 Air Almost as Thin as Its Buttons, New Images Show

Thursday April 24, 2025 2:14 am PDT by
If you missed the video showing dummy models of Apple's all-new super thin iPhone 17 Air that's expected later this year, Sonny Dickson this morning shared some further images of the device in close alignment with the other dummy models in the iPhone 17 lineup, indicating just how thin it is likely to be in comparison. The iPhone 17 Air is expected to be around 5.5mm thick – with a thicker ...
ipad air windows 11 arm

M2 iPad Air Runs Windows 11 ARM via Emulation, Thanks to EU Rules

Tuesday April 22, 2025 5:01 am PDT by
A developer has demonstrated Windows 11 ARM running on an M2 iPad Air using emulation, which has become much easier since the EU's Digital Markets Act (DMA) regulations came into effect. As spotted by Windows Latest, NTDev shared an instance of the emulation on social media and posted a video on YouTube (embedded below) demonstrating it in action. The achievement relies on new EU regulatory...
iphone 16 pro models 1

17 Reasons to Wait for the iPhone 17

Thursday April 17, 2025 4:12 am PDT by
Apple's iPhone development roadmap runs several years into the future and the company is continually working with suppliers on several successive iPhone models simultaneously, which is why we often get rumored features months ahead of launch. The iPhone 17 series is no different, and we already have a good idea of what to expect from Apple's 2025 smartphone lineup. If you skipped the iPhone...
iOS 18

iOS 18.5 Includes Only a Few Changes So Far

Monday April 21, 2025 11:00 am PDT by
Apple seeded the third beta of iOS 18.5 to developers today, and so far the software update includes only a few minor changes. The changes are in the Mail and Settings apps. In the Mail app, you can now easily turn off contact photos directly within the app, by tapping on the circle with three dots in the top-right corner. In the Settings app, AppleCare+ coverage information is more...
iPhone 17 Pro Blue Feature Tighter Crop

iPhone 17 Pro Launching Later This Year With These 13 New Features

Wednesday April 23, 2025 8:31 am PDT by
While the iPhone 17 Pro and iPhone 17 Pro Max are not expected to launch until September, there are already plenty of rumors about the devices. Below, we recap key changes rumored for the iPhone 17 Pro models as of April 2025: Aluminum frame: iPhone 17 Pro models are rumored to have an aluminum frame, whereas the iPhone 15 Pro and iPhone 16 Pro models have a titanium frame, and the iPhone ...

Top Rated Comments

iAFC Avatar
28 months ago

The industry is moving from nm to Ångströms. The node after 2 nm will be 18 å for example.
I'll finally find a use for this key on my Finnish keyboard.
Score: 20 Votes (Like | Disagree)
jdb8167 Avatar
28 months ago

What is the actual transistor size? I haven't been following that closely these past few years.
From Wikipedia:

The term "5 nm" has no relation to any actual physical feature (such as gate length, metal pitch or gate pitch) of the transistors being 5 nanometers ('https://en.m.wikipedia.org/wiki/Nanometer') in size. According to the projections contained in the 2021 update of the International Roadmap for Devices and Systems ('https://en.m.wikipedia.org/wiki/International_Roadmap_for_Devices_and_Systems') published by IEEE Standards Association Industry Connection, a "5 nm node is expected to have a contacted gate pitch of 51 nanometers and a tightest metal pitch of 30 nanometers".[3] ('https://en.m.wikipedia.org/wiki/5_nm_process#cite_note-3') However, in real world commercial practice, "5 nm" is used primarily as a marketing term by individual microchip manufacturers to refer to a new, improved generation of silicon semiconductor chips in terms of increased transistor density (i.e. a higher degree of miniaturization), increased speed and reduced power consumption compared to the previous 7 nm process ('https://en.m.wikipedia.org/wiki/7_nm_process').
https://en.m.wikipedia.org/wiki/5_nm_process


The term "3 nanometer" has no relation to any actual physical feature (such as gate length, metal pitch or gate pitch) of the transistors. According to the projections contained in the 2021 update of the International Roadmap for Devices and Systems ('https://en.m.wikipedia.org/wiki/International_Roadmap_for_Devices_and_Systems')published by IEEE Standards Association Industry Connection, a 3 nm node is expected to have a contacted gate pitch of 48 nanometers and a tightest metal pitch of 24 nanometers.[14] ('https://en.m.wikipedia.org/wiki/3_nm_process#cite_note-14')However, in real world commercial practice, "3 nm" is used primarily as a marketing term by individual microchip manufacturers to refer to a new, improved generation of silicon semiconductor chips in terms of increased transistor density (i.e. a higher degree of miniaturization), increased speed and reduced power consumption.[15] ('https://en.m.wikipedia.org/wiki/3_nm_process#cite_note-15')[16] ('https://en.m.wikipedia.org/wiki/3_nm_process#cite_note-16') Moreover, there is no industry-wide agreement among different manufacturers about what numbers would define a 3 nm node. Typically the chip manufacturer refers to its own previous process node (in this case the 5 nm process ('https://en.m.wikipedia.org/wiki/5_nm_process')node) for comparison. For example, TSMC has stated that its 3 nm FinFET chips will reduce power consumption by 25-30% at the same speed, increase speed by 10-15% at the same amount of power and increase transistor density by about 33% compared to its previous 5 nm FinFET chips.[17] ('https://en.m.wikipedia.org/wiki/3_nm_process#cite_note-17')[18] ('https://en.m.wikipedia.org/wiki/3_nm_process#cite_note-18') On the other hand, Samsung has stated that its 3 nm process will reduce power consumption by 45%, improve performance by 23%, and decrease surface area by 16% compared to its previous 5 nm process.
https://en.m.wikipedia.org/wiki/3_nm_process
Score: 16 Votes (Like | Disagree)
Aston441 Avatar
28 months ago
3 nanometer circuits... I still find this amazing. The first processor I ever experimented with was at 3500 nm. Not a typo.
Score: 13 Votes (Like | Disagree)
Aston441 Avatar
28 months ago

From Wikipedia:


https://en.m.wikipedia.org/wiki/5_nm_process
Holy crap! It's marketing BS ?

I thought something was off. Years ago I remember reading that below 5nm might be impossible due to quantum effects / hard physical reality.

Obviously marketing doesn't have those limitations.
Score: 11 Votes (Like | Disagree)
User 6502 Avatar
28 months ago

3 nanometer circuits... I still find this amazing. The first processor I ever experimented with was at 3500 nm. Not a typo.
it doesn’t seem real because it isn’t. The whole nm thing largely lost meaning and it has little to do with the actual transistor size. Sure there has been huge progress and they can squeeze so many more transistors in the same area than they used to, but 3nm is a misleading number. The truth is that we got to the limit of what’s physically possible: silicon atoms have a size and you can’t change that fact no matter how much research you do.
Score: 9 Votes (Like | Disagree)
jdb8167 Avatar
28 months ago

Does anyone else see what’s happening here? Eventually the nm will require floating point numbers, and these devices will be in more everyday devices running chatGPT 10.0 and replace us (although I think 100-200 year timeline on that last part, if not 5000).
The industry is moving from nm to Ångströms. The node after 2 nm will be 18 å for example.
Score: 7 Votes (Like | Disagree)